Maximum genus and chromatic number of graphs
نویسندگان
چکیده
منابع مشابه
The locating-chromatic number for Halin graphs
Let G be a connected graph. Let f be a proper k -coloring of G and Π = (R_1, R_2, . . . , R_k) bean ordered partition of V (G) into color classes. For any vertex v of G, define the color code c_Π(v) of v with respect to Π to be a k -tuple (d(v, R_1), d(v, R_2), . . . , d(v, R_k)), where d(v, R_i) is the min{d(v, x)|x ∈ R_i}. If distinct vertices have distinct color codes, then we call f a locat...
متن کاملDistance graphs with maximum chromatic number
Let D be a finite set of integers. The distance graph G(D) has the set of integers as vertices and two vertices at distance d ∈ D are adjacent in G(D). A conjecture of Xuding Zhu states that if the chromatic number of G(D) achieves its maximum value |D| + 1 then the graph has a clique of order |D|. We prove that the chromatic number of a distance graph with D = {a, b, c, d} is five if and only ...
متن کاملThe locating chromatic number of the join of graphs
Let $f$ be a proper $k$-coloring of a connected graph $G$ and $Pi=(V_1,V_2,ldots,V_k)$ be an ordered partition of $V(G)$ into the resulting color classes. For a vertex $v$ of $G$, the color code of $v$ with respect to $Pi$ is defined to be the ordered $k$-tuple $c_{{}_Pi}(v)=(d(v,V_1),d(v,V_2),ldots,d(v,V_k))$, where $d(v,V_i)=min{d(v,x):~xin V_i}, 1leq ileq k$. If distinct...
متن کاملGraphs with chromatic number close to maximum degree
Let G be a color-critical graph with χ(G) ≥ Δ(G) = 2t + 1 ≥ 5 such that the subgraph of G induced by the vertices of degree 2t+1 has clique number at most t−1. We prove that then either t ≥ 3 and G = K2t+2 or t = 2 and G ∈ {K6, O5}, where O5 is a special graph with χ(O5) = 5 and |O5| = 9. This result for t ≥ 3 improves a case of a theorem by Rabern [9] and for t = 2 answers a question raised by...
متن کاملChromatic Harmonic Indices and Chromatic Harmonic Polynomials of Certain Graphs
In the main this paper introduces the concept of chromatic harmonic polynomials denoted, $H^chi(G,x)$ and chromatic harmonic indices denoted, $H^chi(G)$ of a graph $G$. The new concept is then applied to finding explicit formula for the minimum (maximum) chromatic harmonic polynomials and the minimum (maximum) chromatic harmonic index of certain graphs. It is also applied to split graphs and ce...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Mathematics
سال: 2003
ISSN: 0012-365X
DOI: 10.1016/s0012-365x(03)00289-9